47 research outputs found

    A computational model of parallel navigation systems in rodents

    Get PDF
    Several studies in rats support the idea of multiple neural systems competing to select the best action for reaching a goal or food location. Locale navigation strategies, necessary for reaching invisible goals, seem to be mediated by the hippocampus and the ventral and dorsomedial striatum whereas taxon strategies, applied for approaching goals in the visual field, are believed to involve the dorsolateral striatum. A computational model of action selection is presented, in which different experts, implementing locale and taxon strategies, compete in order to select the appropriate behavior for the current task. The model was tested in a simulated robot using an experimental paradigm that dissociates the use of cue and spatial informatio

    Spatial navigation in geometric mazes:a computational model of rodent behavior

    Get PDF
    Navigation is defined as the capability of planning and performing a path from the current position towards a desired location. Different types, or strategies, of navigation are used by animals depending on the task they are trying to solve. Visible goals can be approached directly, while navigation to a hidden goal usually requires a memorized representation of relative positions of the goal and surrounding landmarks. Neurophysiological and behavioral experiments on rodents suggest that different brain areas are responsible for the expression of different navigation strategies. Specifically, dorsal striatum has been related to storage and recall of stimulus-response associations underlying simple goal-approaching behaviors, whereas hippocampus is thought to store the spatial representation of the environment. Such a representation is built during an unrewarded spatial exploration and appears to be employed in cases when simple stimulus-response strategies fail. Discovery of neurons with spatially correlated activity, i.e. place cells and grid cells, in the hippocampal formation complements behavioral and lesion data suggesting its role for spatial orientation. The overall objective of this work is to study the neurophysiological mechanisms underlying rodent spatial behavior, in particular those that are responsible for the implementation of different navigational strategies. Special attention is devoted to the question of how various types of sensory cues influence goal-oriented behavior. The model of a navigating rat described in this work is based on functional and anatomical properties of brain regions involved in encoding and storage of space representation and action generation. In particular, place and grid cells are modeled by two interconnected populations of artificial neurons. Together, they form a network for spatial learning, capable of combining different types of sensory inputs to produce a distributed representation of location. Goal-directed actions can be generated in the model via two different neural pathways: the first one drives stimulus-response behavior and associates visual input directly to motor responses; the second one associates motor actions with places and hence depends on the representation of location. The visual input is represented by responses of a large number of orientation-sensitive filters to visual images generated according to the position and orientation of the simulated rat in a virtual three-dimensional world. The model was tested in a large array of tasks designed by analogy to experimental studies on animal behavior. Results of several experimental studies, behavioral as wells as neurophysiological, were reproduced. Based on these results we formulated a hypothesis about the influence that the rat's perception of surrounding environment exerts on goal-oriented behavior. This hypothesis may provide an insight into several issues in animal behavior research that were not addressed by theoretical models until now

    Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory

    Get PDF
    Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation

    Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    Get PDF
    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Agreement in Spiking Neural Networks

    No full text
    International audienceWe study the problem of binary agreement in a spiking neural network (SNN). We show that binary agreement on n inputs can be achieved with O(n) of auxiliary neurons. Our simulation results suggest that agreement can be achieved in our network in O(log n) time. We then describe a subclass of SNNs with a biologically plausible property, which we call size-independence. We prove that solving a class of problems, including agreement and Winner-Take-All, in this model requires O(n) auxiliary neurons, which makes our agreement network size-optimal

    A reinforcement learning approach to model interactions between landmarks and geometric cues during spatial learning

    No full text
    International audienceIn contrast to predictions derived from the associative learning theory, a number of behavioral studies suggested the absence of competition between geometric cues and landmarks in some experimental paradigms. In parallel to these studies, neurobiological experiments suggested the existence of separate independent memory systems which may not always interact according to classic associative principles. In this paper we attempt to combine these two lines of research by proposing a model of spatial learning that is based on the theory of multiple memory systems. In our model, a place-based locale strategy uses activities of modeled hippocampal place cells to drive navigation to a hidden goal, while a stimulus-response taxon strategy, presumably mediated by the dorso-lateral striatum, learns landmark-approaching behavior. A strategy selection network, proposed to reside in the prefrontal cortex, implements a simple reinforcement learning rule to switch behavioral strategies. The model is used to reproduce the results of a behavioral experiment in which an interaction between a landmark and geometric cues was studied. We show that this model, built on the basis of neurobiological data, can explain the lack of competition between the landmark and geometry, potentiation of geometry learning by the landmark, and blocking. Namely, we propose that the geometry potentiation is a consequence of cooperation between memory systems during learning, while blocking is due to competition between the memory systems during action selection

    A model of a panoramic visual representation in the dorsal visual pathway: the case of spatial reorientation and memory-based search

    No full text
    While primates are primarily visual animals, how visual information is processed on its way to memory structures and contributes to the generation of visuospatial behaviors is poorly understood. Recent imaging data demonstrate the existence of scene-sensitive areas in the dorsal visual path that are likely to combine visual information from successive egocentric views, while behavioral evidence indicates the memory of surrounding visual space in extraretinal coordinates. The present work focuses on the computational nature of a panoramic representation that is proposed to link visual and mnemonic functions during natural behavior. In a spiking neural network model of the dorsal visual path it is shown how time-integration of spatial views can give rise to such a representation and how it can subsequently be used to perform memory-based spatial reorientation and visual search. More generally, the model predicts a common role of view-based allocentric memory storage in spatial and non-spatial mnemonic behaviors
    corecore